INTERMEDIATE SUMS ON POLYHEDRA: COMPUTATION AND REAL EHRHART THEORY

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermediate Sums on Polyhedra: Computation and Real Ehrhart Theory

We study intermediate sums, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), 1449–1466]. For a given semi-rational polytope p and a rational subspace L, we integrate a given polynomial function h over all lattice slices of the polytope p parallel to the subspace L and sum...

متن کامل

Lattice Points, Dedekind Sums, and Ehrhart Polynomials of Lattice Polyhedra

Let σ be a simplex of RN with vertices in the integral lattice ZN . The number of lattice points of mσ (= {mα : α ∈ σ}) is a polynomial function L(σ,m) of m ≥ 0. In this paper we present: (i) a formula for the coefficients of the polynomial L(σ, t) in terms of the elementary symmetric functions; (ii) a hyperbolic cotangent expression for the generating functions of the sequence L(σ,m), m ≥ 0; (...

متن کامل

Intermediate Sums on Polyhedra Ii:bidegree and Poisson Formula

We continue our study of intermediate sums over polyhedra, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasipolynomial of a rational simplex, Math. Comp. 75 (2006), 1449– 1466]. By well-known decompositions, it is sufficient to consider the case of affine cones s+c, where s is an arbitrary real vertex and c is a rational polyhed...

متن کامل

ar X iv : 1 40 4 . 00 65 v 2 [ m at h . C O ] 3 N ov 2 01 4 INTERMEDIATE SUMS ON POLYHEDRA II : BIDEGREE AND POISSON FORMULA

We continue our study of intermediate sums over polyhedra, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasipolynomial of a rational simplex, Math. Comp. 75 (2006), 1449– 1466]. By well-known decompositions, it is sufficient to consider the case of affine cones s+c, where s is an arbitrary real vertex and c is a rational polyhed...

متن کامل

Computation of the highest coefficients of weighted Ehrhart quasi-polynomials of rational polyhedra

This article concerns the computational problem of counting the lattice points inside convex polytopes, when each point must be counted with a weight associated to it. We describe an efficient algorithm for computing the highest degree coefficients of the weighted Ehrhart quasi-polynomial for a rational simple polytope in varying dimension, when the weights of the lattice points are given by a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematika

سال: 2012

ISSN: 0025-5793,2041-7942

DOI: 10.1112/s0025579312000101